

    
      
          
            
  
Welcome to Seiðr’s documentation!

Seiðr is a toolkit to create crowd networks. We provide fast implementations
of several highly regarded algorithms as well as utility programs to create
and explore crowd networks.

If you have any questions, contact me at:
bastian.schiffthaler@umu.se
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Building Seidr


Supported OSs

seidr should build fine on most Linux distributions.

Test builds of seidr are created on Ubuntu 18.04 and Fedora 31. It is possible to
build on Mac OS X (with some effort). Microsoft Windows is currently not supported.




Basic Build

Currently, seidr has the following dependencies (examplary dnf packages on Fedora):


	gcc


	gcc-c++


	gcc-gfortran


	cmake


	git


	boost-devel


	glpk-devel or coin-or-Clp-devel (see A note on CLP and GLPK)


	armadillo-devel


	zlib-devel




Once the dependencies are satisfied, build with:

git clone --recursive https://github.com/bschiffthaler/seidr
cd seidr
mkdir build
cmake -DCMAKE_BUILD_TYPE=Release ..
make





If you have multiple CPU cores, run make as make -j <ncpus> to speed up building.




Building with MPI

If you have access to a compute cluster, you might want to build seidr with
MPI support. If you have the MPI libraries installed (e.g.: openmpi-devel on Fedora) add:

cmake -DSEIDR_WITH_MPI=ON ..





You will need in addition these packages:



	openmpi-devel







to the CMake build options. This is only beneficial if you want to run multi-node jobs,
as otherwise the overhead from MPI will decrease overall performance on a single node.




Building Parallel STL (PSTL)

If you have Intel TBB and PSTL availble, you can build seidr with support for
parallel STL algorithms, which can speed up some operations. To do that, add:

cmake -DSEIDR_PSTL=ON ..





to the CMake build options.




A note on CLP and GLPK

The narromi algorithm uses linear programming routines, which in seidr is
implemented via either GLPK or CLP backends. GLPK is widely available, but not
safe to use in an OpenMP context, you will therefore be limited to a single OMP thread.
CLP is safer, but packages are less widely available (you might need to build form source).
If you want to build seidr with the CLP backend add:

cmake -DNARROMI_USE_CLP=ON ..











          

      

      

    

  

    
      
          
            
  
Getting Started


Tutorial Data

The tutorial data is a set of 500 salmon [https://combine-lab.github.io/salmon/] pseudo-alignments targeting Saccharomyces cerevisiae. They originate from public SRA [https://www.ncbi.nlm.nih.gov/sra/] data. In fact the files names are simply their SRA accessions. In this tutorial, we will go through a simple pre-processing step and then create individual and aggregate networks. First, let’s get the data:

mkdir seidr_tutorial
cd seidr_tutorial
wget https://bschiffthaler.s3-eu-west-1.amazonaws.com/SeidrPublic/seidr_tutorial.tar.gz
tar -xvf seidr_tutorial.tar.gz








Pre-processing

Data pre-processing is done in R. We’ll use tximport [https://bioconductor.org/packages/release/bioc/html/tximport.html] to load the data into R, and then use DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] to variance-stabilize.

library(tximport)
library(DESeq2)
library(readr)

# This load the mapping of genes to transcripts into R so that tximport can
# summarize counts
tx2g <- read_tsv('seidr_tutorial/tx2gene.tsv',
                 col_names=c('Transcript', 'Gene'))

# Now let's find all our count files and load them into R using tximport
input_files <- dir('seidr_tutorial', pattern='*_quant.sf$', full.names=TRUE)
txi <- tximport(input_files, 'salmon', tx2gene=tx2g)

# In order to make a DESeq2 data set, we need some metadata. For now we'll
# just use some dummy data
dummy_meta <- data.frame(N = seq_along(input_files))
dds <- DESeqDataSetFromTximport(txi, dummy_meta, ~1)

# Now we run variance stabilization and get the stabilized data as a matrix. If
# you have good metadata, you can use the experimental design in the DESeqDataSet
# and set blind=FALSE here
vsd <- varianceStabilizingTransformation(dds, blind=TRUE)
vst <- t(assay(vsd))

# Genes that do not vary at all create problems down the line, so it's better
# to drop them
vars <- apply(vst, 2, var)
filt_id <- which(is.finite(vars))
vst <- vst[, filt_id]

# Let's also center samples around their median, which has been shown to
# improve reconstruction accuracy
medians <- apply(vst, 1, median)
vst <- sweep(vst, MARGIN=1, FUN='-', STATS=medians)

# MASS's write.matrix function is a bit faster and better suited for our task
# compared to write.table. Don't forgot to unname(), otherwise you will have
# column headers in the output
MASS::write.matrix(x=unname(vst), sep='\t', file='expression.tsv')

# Finally, let's write the column headers (== gene names) as a text file
write(colnames(vst), file="genes.txt")








All versus all networks


Sub-setting the data

In this section, we will create an all vs. all comparison, meaning we will estimate connectivity of all genes to all other genes. This approach is the most resource demanding, so we’ll create a smaller subset of the tutorial data first. We’ll take 100 samples and the first 1000 genes. Our output network will therefore be \(\frac{1000 \cdot 999}{2}\).

tail -n 100 expression.tsv | cut -f 1-1000 > expression_sub.tsv
head -n 1000 genes.txt > genes_sub.txt








Network inference

Now that we have a data subset, we can get started with the inference. In this step, we’ll create 13 different all vs. all networks using algorithms that seidr ships with. If you have any inference algorithm you would like to include that is not yet implemented in seidr, you can run that as well, but make sure its output is in a format seidr can import (Importing text based formats into Seidr). Even though this is a sub-set, you’ll probably need to set aside an hour for the inference. If you want a quicker run, you can leave out el-ensemble. You’ll see that we use the --scale option a number of times. This instructs seidr to perform feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization_(Z-score_Normalization)] on the data, which, in general, will improve the results.:

# fast
correlation -m pearson -i expression_sub.tsv -g genes_sub.txt --scale
correlation -m spearman -i expression_sub.tsv -g genes_sub.txt
pcor -i expression_sub.tsv -g genes_sub.txt --scale

# medium
mi -m RAW -i expression_sub.tsv -g genes_sub.txt -o mi_scores.tsv
mi -m CLR -i expression_sub.tsv -g genes_sub.txt -M mi_scores.tsv -o clr_scores.tsv
mi -m ARACNE -i expression_sub.tsv -g genes_sub.txt -M mi_scores.tsv -o aracne_scores.tsv

# slow
narromi -m interior-point -i expression_sub.tsv -g genes_sub.txt -o narromi_scores.tsv
plsnet -i expression_sub.tsv -g genes_sub.txt -o plsnet_scores.tsv --scale
llr-ensemble -i expression_sub.tsv -g genes_sub.txt -o llr_scores.tsv --scale
svm-ensemble -k POLY -i expression_sub.tsv -g genes_sub.txt -o svm_scores.tsv --scale
genie3 -i expression_sub.tsv -g genes_sub.txt -o genie3_scores.tsv --scale
tigress -i expression_sub.tsv -g genes_sub.txt -o tigress_scores.tsv --scale

# very slow
el-ensemble -i expression_sub.tsv -g genes_sub.txt -o elnet_scores.tsv --scale








Network ranking

Different inference algorithms output networks with different metrics for edge weights. A correlation network, will assign scores anywhere in \([-1, ..., 1]\), whereas mututal information is in \([0, ..., N]\), and many of the regression algorithms in \([0, ..., 1]\). We can therefore not just sum the weights to get a final, community network. In order to do that, we want to convert the scores to ranks [https://en.wikipedia.org/wiki/Ranking#Ranking_in_statistics]. The command seidr import takes care of that. Some useful options:


	-A: This option computes the rank on the absolute value of the score, so -1 and +1 would get the same rank.


	-r: This option indicates that higher scores are better. A score of 1 would get a lower (== better) rank than a score of 0.5.


	-u: This option creates an undirected network. We use this in algorithms where we know the output is symmetric (A->B and B->A are the same), but only have the lower triangular matrix. Examples are all correlation and mutual information based methods.


	-z: This option drops edges with a score of 0. By default we keep all edges, but this will create sparser networks for methods that output 0-valued edges.




seidr import -A -r -u -n PEARSON -o person_scores.sf -F lm -i pearson_scores.tsv -g genes_sub.txt
seidr import -A -r -u -n SPEARMAN -o spearman_scores.sf -F lm -i spearman_scores.tsv -g genes_sub.txt
seidr import -A -r -u -n PCOR -o pcor_scores.sf -F lm -i pcor_scores.tsv -g genes_sub.txt

seidr import -r -u -n MI -o mi_scores.sf -F lm -i mi_scores.tsv -g genes_sub.txt
seidr import -r -u -z -n CLR -o clr_scores.sf -F lm -i clr_scores.tsv -g genes_sub.txt
seidr import -r -u -z -n ARACNE -o aracne_scores.sf -F lm -i aracne_scores.tsv -g genes_sub.txt

seidr import -r -z -n NARROMI -o narromi_scores.sf -F m -i narromi_scores.tsv -g genes_sub.txt
seidr import -r -z -n PLSNET -o plsnet_scores.sf -F m -i plsnet_scores.tsv -g genes_sub.txt
seidr import -r -z -n LLR -o llr_scores.sf -F m -i llr_scores.tsv -g genes_sub.txt
seidr import -r -z -n SVM -o svm_scores.sf -F m -i svm_scores.tsv -g genes_sub.txt
seidr import -r -z -n GENIE3 -o genie3_scores.sf -F m -i genie3_scores.tsv -g genes_sub.txt
seidr import -r -z -n TIGRESS -o tigress_scores.sf -F m -i tigress_scores.tsv -g genes_sub.txt
seidr import -r -z -n ELNET -o elnet_scores.sf -F m -i elnet_scores.tsv -g genes_sub.txt








Aggregating

Aggregating refers to the construction of a community network from the individual networks created before. Note that there are several aggregation methods available. We will use the “Inverse Rank Product” method described in [Zhong2014].

seidr aggregate -m irp aracne_scores.sf clr_scores.sf elnet_scores.sf genie3_scores.sf llr_scores.sf mi_scores.sf narromi_scores.sf pcor_scores.sf person_scores.sf plsnet_scores.sf spearman_scores.sf svm_scores.sf tigress_scores.sf





This creates a community network of all the 1000 genes in our sample data. If you don’t want to learn how you can create a network for a group of genes (e.g. only transcription factors), jump right to Post processing.




Taking a look at the final network

We can have a look at the top three edges in the network:

seidr top -n 3 aggregated.sf | column -t





YDL039C    YDL037C    Undirected  0.777779;83  14.1252;1   0.511;433  3.61084;7   0.138;61223.5  0.777779;204  0.709272;39   0.0787986;93     0.837201;940  1.5595;25      0.780375;1512  nan;nan        1;1.5       0.949186;3
YDL025W-A  YBL006W-A  Undirected  1.05879;2    8.3004;29   0.543;4    3.30464;21  0.496;2775     1.05879;2     0.372718;529  0.0172536;31848  0.909562;219  0.654752;1758  0.847192;364   0.463;4415     0.8677;144  0.967855;2
YAL037C-B  YCR013C    Directed    1.00539;7    9.08174;14  0.519;168  2.82549;92  0.517;407      1.00539;7     0.777048;28   0.032911;3601    0.928263;137  0.991901;297   0.846061;373   0.204;12028.5  0.99325;16  1;1





Most of these are from dubious ORFs (which should have maybe been filtered beforehand). The one that is not, is definitely a good result, YDL039C and YDL037C as both these genes form the IMI1 protein [https://www.yeastgenome.org/locus/S000149345].






Creating targeted networks

Sometimes, we are not interested in the interactions of all genes, we just want to know what our genes of interest look like in the network. We can then run seidr in targeted mode, which will compute only what’s necessary to understand that particular group of genes. The slowest of the bunch will probably be the mutual information based algorithms CLR and ARACNe, since they are context dependent and the full mutual information matrix needs to be computed first.


Making targets

Since we need some targets to look at, I select a single transcription factor FZF1, and store the gene identifier in a file.

echo "YGL254W" > FZF1.txt








Inferring sub-networks

The network inference step is nearly the same, but now we use the full expression set (all ~6500 genes and 500 samples) as well as the FZF1.txt targets file.

# fast
correlation -t FZF1.txt -m pearson -i expression.tsv -g genes.txt --scale -o pearson_fzf1_scores.tsv
correlation -t FZF1.txt -m spearman -i expression.tsv -g genes.txt -o spearman_fzf1_scores.tsv
pcor -t FZF1.txt -i expression.tsv -g genes.txt --scale -o pcor_fzf1_scores.tsv

# medium
mi -t FZF1.txt -m RAW -i expression.tsv -g genes.txt -M mi_full_scores.tsv -o mi_fzf1_scores.tsv
mi -t FZF1.txt -m CLR -i expression.tsv -g genes.txt -M mi_full_scores.tsv -o clr_fzf1_scores.tsv
mi -t FZF1.txt -m ARACNE -i expression.tsv -g genes.txt -M mi_full_scores.tsv -o aracne_fzf1_scores.tsv

# slow
narromi -t FZF1.txt -m interior-point -i expression.tsv -g genes.txt -o narromi_fzf1_scores.tsv
plsnet -t FZF1.txt -i expression.tsv -g genes.txt -o plsnet_fzf1_scores.tsv --scale
llr-ensemble -t FZF1.txt -i expression.tsv -g genes.txt -o llr_fzf1_scores.tsv --scale
svm-ensemble -t FZF1.txt -k POLY -i expression.tsv -g genes.txt -o svm_fzf1_scores.tsv --scale
genie3 -t FZF1.txt -i expression.tsv -g genes.txt -o genie3_fzf1_scores.tsv --scale
tigress -t FZF1.txt -i expression.tsv -g genes.txt -o tigress_fzf1_scores.tsv --scale

el-ensemble -t FZF1.txt -i expression.tsv -g genes.txt -o elnet_fzf1_scores.tsv --scale








Importing

Targeted mode outputs results in edge list format, so all out imports now contain -F el instead of -F lm or -F m.

seidr import -A -r -u -n PEARSON -o person_fzf1_scores.sf -F el -i pearson_fzf1_scores.tsv -g genes.txt
seidr import -A -r -u -n SPEARMAN -o spearman_fzf1_scores.sf -F el -i spearman_fzf1_scores.tsv -g genes.txt
seidr import -A -r -u -n PCOR -o pcor_fzf1_scores.sf -F el -i pcor_fzf1_scores.tsv -g genes.txt

seidr import -r -u -n MI -o mi_fzf1_scores.sf -F el -i mi_fzf1_scores.tsv -g genes.txt
seidr import -r -u -z -n CLR -o clr_fzf1_scores.sf -F el -i clr_fzf1_scores.tsv -g genes.txt
seidr import -r -u -z -n ARACNE -o aracne_fzf1_scores.sf -F el -i aracne_fzf1_scores.tsv -g genes.txt

seidr import -r -z -n NARROMI -o narromi_fzf1_scores.sf -F el -i narromi_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n PLSNET -o plsnet_fzf1_scores.sf -F el -i plsnet_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n LLR -o llr_fzf1_scores.sf -F el -i llr_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n SVM -o svm_fzf1_scores.sf -F el -i svm_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n GENIE3 -o genie3_fzf1_scores.sf -F el -i genie3_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n TIGRESS -o tigress_fzf1_scores.sf -F el -i tigress_fzf1_scores.tsv -g genes.txt
seidr import -r -z -n ELNET -o elnet_fzf1_scores.sf -F el -i elnet_fzf1_scores.tsv -g genes.txt








Aggregating

This is exactly the same as for the full network.

seidr aggregate -m irp -o aggregated_fzf1.sf aracne_fzf1_scores.sf clr_fzf1_scores.sf elnet_fzf1_scores.sf genie3_fzf1_scores.sf llr_fzf1_scores.sf mi_fzf1_scores.sf narromi_fzf1_scores.sf pcor_fzf1_scores.sf person_fzf1_scores.sf plsnet_fzf1_scores.sf spearman_fzf1_scores.sf svm_fzf1_scores.sf tigress_fzf1_scores.sf








Taking a look at the final network

Just as before, let’s look at the top three connections of our TF.

seidr top -n 3 aggregated_fzf1.sf





YGL254W  YEL051W  Directed  nan;nan  3.11877;43     0.458;2    1.81032;4     0.004;3226  0.387233;48    nan;nan       -0.00566415;1138  -0.57406;1    0.035306;28   -0.462468;6  0.001;3050.5  0.74525;2  0.874875;3
YGL254W  YGL128C  Directed  nan;nan  0.886213;1151  0.443;4.5  0.266012;279  0.248;86    0.265754;1222  0.0648351;43  0.010073;254      0.453637;131  0.0382971;21  0.404141;49  0.207;210.5   0.19945;7  0.888152;2
YGL254W  YFL044C  Directed  nan;nan  3.24149;31     0.451;3    0.581017;113  0.352;17    0.383645;52    0.1711;4      0.00935282;329    0.477231;78   0.0320321;45  0.444953;11  0.041;1019    0.25265;4  1;1





The top connections are OTU1 (YFL044C), CWC23 (YGL128C), and VMA8 (YEL051W).






Post processing


Pruning noisy edges

In most cases, the community network will be fully dense, meaning every gene is connected to every other gene with a certain score. Many of these edges are just noise and we would like to prune them. [Coscia2017] have developed a smart approach to pruning noisy edges called “Network backboning”. We can apply this to our community network as:

seidr backbone -F 1.28 aggregated.sf








Viewing edges in the network

The seidr view command offers an interface to query the seidr output. Let’s look at a few edges.

seidr view --column-headers aggregated.bb.sf | head -n 3 | column -t





Source  Target  Type        ARACNE_score;ARACNE_rank  CLR_score;CLR_rank  ELNET_score;ELNET_rank  GENIE3_score;GENIE3_rank  LLR_score;LLR_rank  MI_score;MI_rank  NARROMI_score;NARROMI_rank  PCOR_score;PCOR_rank  PEARSON_score;PEARSON_rank  PLSNET_score;PLSNET_rank  SPEARMAN_score;SPEARMAN_rank  SVM_score;SVM_rank  TIGRESS_score;TIGRESS_rank  irp_score;irp_rank  NC_Score;NC_SDev;SEC;EBC
Q0017   Q0010   Undirected  nan;nan                   3.58054;6569        0.317;14818             0.587286;20930            0.221;43021         0.255911;100939   0.364063;574                0.0246169;10270       0.644044;14824              1.01683;268               0.509318;33915                0.154;13896         0.17055;3855.5              0.440763;1637       0.602226;0.375774;0.459647;130
Q0032   Q0010   Undirected  nan;nan                   2.38815;27858       0.269;18028             0.905035;9646             0.138;61223.5       0.138116;379828   nan;nan                     0.0481595;843         0.679379;10339              1.19476;122               0.386693;81327                0.287;9567          0.0787;8143.5               0.37659;3358        0.621852;0.388965;0.364875;218








Querying specific nodes or edges

If the seidr output is indexed with the seidr index command, we can query specific nodes and edges.

seidr index aggregated.bb.sf
# Node
seidr view -n YBR142W aggregated.bb.sf
# Edge
seidr view -n YBR142W:YDL063C aggregated.bb.sf








Graph and centrality statistics

Seidr can compute statistics on the entire graph and some node centrality measures. Before we do that, it’s best to make sure we have no disconnected nodes in the graph, which we drop with:

seidr reheader aggregated.bb.sf





Then, we can use seidr graphstats to compute graph summary stats.

seidr graphstats aggregated.bb.sf





Number of Nodes:        974
Number of Edges:        4150
Number of Connected Components: 2
Global clustering coefficient:  0.338051
Scale free fit: 0.0555276
Average degree: 8.52156
Average weighted degree:        3.71159
Network diameter:       4.00379
Average path length:    1.66305





Finally, we can compute node centrality statistics with seidr stats

seidr stats --exact aggregated.bb.sf
seidr view --centrality aggregated.bb.sf | sort -k2g | tail -n 5 | column -t





YBL006W-A  0.002748    1344   14.8438  0.140839     0.0339691
YBL039C    0.00279961  1322   14.4697  0.000898011  0.0339036
YBR142W    0.00282644  6460   14.3319  0.00113027   0.03388
YBL012C    0.00296141  10198  16.4288  0.156134     0.0342437
YAL045C    0.00306967  4364   17.8655  0.234332     0.0344952













          

      

      

    

  

    
      
          
            
  
The Crowd Network Idea

Seidr is a product of an idea presented in the DREAM 5 network challenge
[Marbach2012]. In it, the authors show that gene regulatory network
inference algorithms tend to suffer from biases towards specific interaction patters.
They suggested a way to get around this by creating an aggregate of all the
methods used in the study: a crowd network.

While the paper is widely cited, there is little software that attempts to
integrate the findings. Seidr is an attempt to create a toolbox that
simplifies the laborious effort of creating crowd networks.


The basic pipeline

A typical run of seidr has three steps:


	Infer: In the inference step, independent gene-gene networks are created by a multitude of algorithms.


	Import: In order to merge these networks, they are first sorted and ranked. To achieve this seidr uses its own file format: SeidrFiles (see SeidrFiles).


	Aggregate: Once all methods are ready, seidr can aggregate them to a crowd network.




[image: ../../_images/pipeline.png]
In principle, any network can be input into seidr, as long as it was constructed
under similar assumptions as all other networks. For example, it would be a bad idea
to take a subset of genes and create a network, which is then aggregated with another
subset using different genes. Seidr provides a number of algorithms as native
applications written in C++:












	Name

	Published

	Type

	Orig. Lang.

	Seidr Lang.

	Orig. Parallel

	Seidr Parallel





	ANOVERENCE

	[Kueffner2012]

	ANOVA

	C++

	C++

	No

	No



	ARACNE

	[Margolin2006]

	MI + DPI

	C++

	C++

	Yes

	Yes



	CLR

	[Faith2007] [Daub2004]

	MI + CLR

	MATLAB / C / C++

	C++

	No

	Yes



	Elastic Net ensemble

	[Ruyssinck2014]

	Elastic Net Regression

	R (glmnet)

	C++ (glmnet)

	No

	Yes



	GENIE3

	[Huynh-Thu2010]

	Random Forest Regression

	R (randomForest)

	C++ (ranger)

	No

	Yes



	NARROMI

	[Zhang2013]

	MI + Linear Programming

	MATLAB

	C++ (glpk)

	No

	Yes



	Partial Correlation

	[Schafer2005]

	Correlation

	R

	C++

	No

	No



	Pearson Correlation

	NA

	Correlation

	NA

	C++

	No

	No



	PLSNET

	[Guo2016]

	PLS

	MATLAB

	C++

	No

	Yes



	Spearman Correlation

	NA

	Correlation

	NA

	C++

	No

	No



	SVM ensemble

	[Ruyssinck2014]

	SVM regression

	R (libsvm) / C

	C++ (libsvm or liblinear)

	No

	Yes



	TIGRESS

	[Haury2012]

	LASSO Regression

	MATLAB / R

	C++ (glmnet)

	No

	Yes









Downstream

Once you have a network, you probably want to explore it. To that end we provide
some utilities to investigate the networks and to prepare them for input into
other software.







          

      

      

    

  

    
      
          
            
  
Importing text based formats into Seidr


Introduction

Seidr works with its own binary file format, SeidrFile (see SeidrFiles).
In order to convert text based formats to a SeidrFile we use the seidr import
command. Format conversion is not the only thing seidr import does, it also
ranks edge weights in the input files according to user parameters.




Import formats

seidr import currently supports three text based input formats.

Lower triangular matrix (--format "lm")

A lower triangular matrix represents the lower half of a symmetric matrix. This
is particularly useful for non directional inference algorithms. Take Pearson
correlation as an example: If we correlate two vectors \(x, y\), it does
not matter if we check \(x \sim y\) or \(y \sim x\). It would therefore
be a waste of space to store and a waste of computational resources to compute
the second comparison. A lower trinagular matrix will have the result of each
comparison exactly once:

    G1  G2  G3  G4  G5
G1
G2  0
G3  1   2
G5  3   4   5
G5  6   7   8   9





All cells with an index in the above matrix exist in the lower triangular. Note that
the input is expected to be without headers, e.g.:

0
1   2
3   4   5
6   7   8   9





Matrix (--format "m")

Opposed to the lower triangular, a matrix input is a square of all nodes vs
all nodes (including self-self, which is ignored). This is the output of
several machine learning algorithms which are non-symmetric (e.g. GENIE3, ELNET):

    G1  G2  G3  G4  G5
G1  0   1   2   3   4
G2  5   6   7   8   9
G3  10  11  12  13  14
G4  15  16  17  18  19
G5  20  21  22  23  24





Same as before, the input is expected to be without headers:

0   1   2   3   4
5   6   7   8   9
10  11  12  13  14
15  16  17  18  19
20  21  22  23  24





Edge lists (--format "el")

Edge lists are simple TAB separated files, which describe one edge one line. They
are relatively inefficient and store a lot of repetitive information, but they
are very convenient for sparse networks and for humans to read:

G1  G2  0
G1  G3  1
G1  G4  2
G1  G5  3
G2  G3  4
G2  G4  5
G2  G5  6
G3  G4  7
G3  G5  8
G4  G5  9





ARACNE2 (--format "ara")

While seidr can read output in the format of the original ARACNE2 output,
the feature is not very well tested and should be considered experimental.




Importing your data

As a minimum, three arguments are required:


	-i, --infile: The input text file


	-g, --genes : A file containing all genes (nodes) in the input file


	-F, --format: The input format (lm, m, el)




Let’s assume we have the lower triangular from before as output from our
algorithm lm.txt:

0
1   2
3   4   5
6   7   8   9





We also have a file containg the names of nodes in the same order as the matrix.
Note that for the lower triangular this file is assumed to be sorted as if it
was column headers for the full (square) matrix. Generally, this is the same
as column headers for the input data matrix of the algorithms nodes.txt:

G1
G2
G3
G4
G5





We can then run:

seidr import -i lm.txt -g nodes.txt -F lm





Once it finishes, we can view the output with:

$ seidr view elranks.sf
G2  G1  Directed  0;1
G3  G1  Directed  1;2
G3  G2  Directed  2;3
G4  G1  Directed  3;4
G4  G2  Directed  4;5
G4  G3  Directed  5;6
G5  G1  Directed  6;7
G5  G2  Directed  7;8
G5  G3  Directed  8;9
G5  G4  Directed  9;10








Adjusting import behaviour

Depending on the algorithm, the default behaviour might need to be adjusted. In
the last example, we imported a lower triangular matrix, which by default creates
all directed edges. In many cases, this might not be true as the lower triangular
is likely to stem from a symmetric inference algorithm. The -u, --undirected
option would do just that. Here are all modifiers:


	-u, --undirected: Forces all edges to be interpreted as undirected. Use when source data is from a symmetric method


	-z, --drop-zero : Regards edges with a score of 0 as missing. Use for sparse methods.


	-r, --reverse   : Considers higher edge weights better. Use when a higher score means a more confident prediction. Most methods implemented in seidr work that way, e.g. an edge weight of 0.6 is better than one of 0.2. If you import data from an algorithm that computes e.g. P-values, you need to omit this flag, as lower P-values are better.


	-A, --absolute  : Computes the ranking using absolute values. A good example for this is Pearson correlation. Both 1 and -1 are perfect correlations, but they tell different stories. We want to keep the sign intact, but give both edges the highest rank for aggregation, therefore we use this flag.







Naming imports

The last flag (-n, --name) lets you provide an internal name to the
SeidrFile you are creating. Later, when you aggregate several SeidrFiles
this will let you recognize the source of each score/rank column in the aggregated
network.




A note on parallelism

If seidr was compiled with a compiler that supports OpenMP, seidr import
will carry out some steps in parallel. You can control how many CPUs it should
use with the OMP_NUM_THREAD environment variable. If you would like to turn
multithreading for for example:

OMP_NUM_THREAD=1 seidr import -f lm.txt -g nodes.txt -F lm ...











          

      

      

    

  

    
      
          
            
  
Aggregating networks into a crowd network


Introduction

Given a number of networks in SeidrFile format, seidr can aggregate those
into a crowd network. The basic syntax is:

seidr aggregate <SeidrFile> <SeidrFile> ...





There are currently four methods of aggregation implemented:


	-m borda: This will ouput a mean of ranks.


	-m top1: This will ouput the edge with the highest score (==lowest rank) of all methods


	-m top2: This will ouput the middle of the two highest scores (==lowest ranks) of all methods


	-m irp: This will calculate the inverse rank product.




From a real example:

seidr aggregate -m irp ../elnet/elnet_scores.sf ../narromi/narromi_scores.sf ../pearson/pearson_scores.sf ../spearman/spearman_scores.sf ../plsnet/plsnet_scores.sf ../aracne/aracne_scores.sf ../tigress/tigress_scores.sf ../clr/clr_scores.sf ../genenet/genenet_scores.sf ../svm/svm_scores.sf ../llr/llr_scores.sf ../genie3/genie3_scores.sf ../anova/anova_scores.sf





Without specifying an output file, this will create a file aggregated.sf in the
current working directory. Each column after the third (excluding the supplementary)
column stores the score and rank for each edge (if present) in all aggregated methods.
Converted to text (with seidr view) the file looks like this:

Source  Target  Type  ELNET_score;ELNET_rank  Narromi_score;Narromi_rank  Pearson_score;Pearson_rank  Spearman_score;Spearman_rank  PLSNET_score;PLSNET_rank  ARACNE_score;ARACNE_rank  TIGRESS_score;TIGRESS_rank  CLR_score;CLR_rank  PCor_score;PCor_rank  SVM_score;SVM_rank  LLR_score;LLR_rank  GENIE3_score;GENIE3_rank  ANOVA_score;ANOVA_rank  irp_score;irp_rank
G2  G1  Undirected  0.004;334084  0.0128741;202752  -0.159435;202751  -0.00225177;1.32058e+06 1.07712e-05;360264nan;nan nan;nan 1.87357;106802  -0.018736;243746  0.152;26168 0.244;37455.5 0.0904447;42007 0.288087;1.30856e+06  0.176275;129253
G3  G1  Undirected  0.334;22729.5 0.0381324;38394 -0.270978;44973 -0.214385;48864 3.2165e-05;61265  nan;nan 0.0028;78346.5  2.27349;70552.5 -0.021059;184389  0.077;91342.5 0.203;48670.5 0.215094;12249  0.388856;608154 0.299126;27713





We note that the final column stores the score of the aggregated network (IRP method).
For all future purposes, this is the representative score unless otherwise specified.







          

      

      

    

  

    
      
          
            
  
Estimating a hard threshold for a given seidr network

Note that generally ``seidr backbone`` is preferred to this approach. See Calculating a Network Backbone

Post aggregation, if any network in the input dataset was fully dense (i.e.
having a score for each possible link in the network) the aggregated network
will also be fully dense. The vast majority of the edges in the network will be
noise, therefore we would like to find a cutoff that represents most of the
signal being kept, and most of the noise trimmed away.


Running seidr threshold

The goal of seidr threshold is to provide a utility that assists in picking
a hard cutoff. To that end it will iterate the network through a list of
predefined thresholds and calculate:


	The number of edges


	The number of nodes


	The R^2 fit of the network to the Scale Free Distribution [https://en.wikipedia.org/wiki/Scale-free_network]


	The Average Clustering Coefficient [https://en.wikipedia.org/wiki/Clustering_coefficient#Network_average_clustering_coefficient]




It is left to the user to determine the final cutoff, based on expectation and
background knowledge of the network.

In this example, we have already filtered the nodes of the network to strip away
those of low interest, our goal is therefore to maximize the number of nodes kept,
while keeping SFT and ACC high. At the indicated value, we keep 23470 nodes,
191547 edges, with a SFT of 0.933 and an ACC of 0.169:

[image: ../../_images/threshold.png]



A note on “scale freeness”

Using either scale freeness or average clustering coefficient to determine a hard
cut for a network is not without issues. Recent insights (e.g. [Broido2018] )
show that scale free networks are rare in real world networks and the criterion
should most definitely be applied with caution. A better approach would be to
select nodes kept from a known “gold standard” or - if only the core interactions
are of interest - to perform “Network backboning” as described in e.g. [Coscia2017] .




Running seidr threshold

seidr threshold takes as a minimum a SeidrFile - usually, but not necessarily -
from an aggregated network. By default it will create 1,000 evenly spaced thresholds
in range \([0, 1]\). In practice, this tends to be wasteful of resources as
most high density thresholds tend to be not useful. There are several options
to adjust the range of thresholds to be tested:


	--min, -m: Adjust the lowest threshold to be tested


	--max, -M: Adjust the highest threshold to be tested


	--nsteps, -n: Adjust the number of steps to be tested




By default, seidr threshold will check the score of the last column in the
SeidrFile, which can be adjusted with:


	--index, -i: Adjust which score to use to determine the cutoff


	--threshold-rank, -r: Determine a rank cutoff as opposed to a score




Be mindful that if you choose to threshold ranks, the meaning of minimum and
maximum change (in the rank, lower is better). And to adjust the ranges not to
test in rage \([0, 1]\), but rather \([1, N]\), where N is the highest
number of edges you would like to test.




Output

seidr threshold writes a tab separated table to stdout. The headers are:


	Threshold


	Number of nodes


	Number of edges


	Scale free fit (R^2)


	Average clustering coefficient




An example output looks like:

0.842 5 5 0.80504672  0.375
0.841 5 5 0.80504672  0.375
0.84  5 5 0.80504672  0.375
0.839 5 6 0.027420548 0.54545455
0.838 5 6 0.027420548 0.54545455
0.837 5 6 0.027420548 0.54545455
0.836 5 6 0.027420548 0.54545455
0.835 7 7 0.93935184  0.54545455
0.834 7 7 0.93935184  0.54545455











          

      

      

    

  

    
      
          
            
  
Calculating a Network Backbone

seidr implements Coscia and Neffke’s backboning algorithm (very neatly described here [http://www.michelecoscia.com/?p=1236] if you don’t feel like handling a lot of math, otherwise here: [Coscia2017]).

On any SeidrFile you can run:

seidr backbone seidrfile.sf





to calculate the network backbone statistics. Not that we are not cutting edges yet. To do that, we need to specify a measure of standard deviations to cut. Essentially, we want to define how extreme an edge has to deviate from its expected value, so that we keep it, the higher, the more stringent. A conservative value, would be 1.28, which corresponds approxiamtely to a P-value of 0.1:

seidr backbone -F 1.28 -o seidrfile.bb.1.28.sf seidrfile.bb.sf









          

      

      

    

  

    
      
          
            
  
Getting network statistics


Centrality


How scores are used in seidr stats

We typically use scores as measures of similarity in seidr workflows. This means that higher is better. As an example in this network:

A  B  1
A  C  0.5





the edge A<->B is stronger than A<->C. In centrality metrics we often use weights as either similarity, or distance. When we e.g., calculate betweenness centrality, we want to know the shortest path from A to B, therefore weights are usually interpreted as distances here, and therefor lower is better.

By default seidr assumes that weights are similarities and handles them as such. When sensible, it will use \(\frac{1}{w}\). If your data represents a distance, you must use the flag --weight-is-distance, otherwise your outcome will be wrong. If you set this flag, seidr will use \(\frac{1}{w}\) for calculations where it assumes the weight indicates a similarity (i.e. the behaviour is inverse). See metrics below where the similarity [S] and distance [D] metrics are indicated.




Metrics

seidr can calculate a limited number of network centrality statistics on SeidrFiles.

On any SeidrFile you can run:

seidr stats seidrfile.sf





to calculate the network centrality statistics. By default all metrics that can be calculated will be. Use the -m,--metrics option to control this (see above as to the meaning of [S] and [D]):

For nodes


	PR - PageRank [S]


	CLO - Closeness centrality [D]


	BTW - Betweenness centrality [D]


	STR - Strength (weighted degree) centrality [S]


	EV - Eigenvector centrality [S]


	KTZ - Katz centrality [S]


	LPC - Laplacian centrality [S]




For edges


	SEC - Spanning edge centrality [D]


	EBC - Edge betweenness centrality [D]




To select only few of these run e.g.:

stats stats -m BTW,CLO seidrfile.sf








Approximate vs exact

By default, seidr uses approximations where it can to compute centrality statistics. It will sample -n,--nsamples nodes to do so. If not specified, that number is 10% of nodes. If your network is small, you can turn on exact metrics with -e,--exact.




Viewing stats

You can view node level statistics with:

seidr view --centrality seidrfile.sf





Edge level statistics are stored as edge attributes. You can add tags to see which attributes correspond to which stat:

seidr view -a seidrfile.sf













          

      

      

    

  

    
      
          
            
  
ANOVERENCE

Please not that it is currently not recommended to run ANOVERENCE due to inconsitencies with the original implementation that we were not able to clarify with the original author

ANOVERENCE ([Kueffner2012]) employs the \(\eta^2\) metric, a nonlinear correlation coefficient derived from an analysis of variance (ANOVA) ([Cohen1973]). It is one
of the few methods that make direct use of experiment metadata, like perturbations,
knockouts and overexpressions.


Running ANOVERENCE

ANOVERENCE needs a minimum of three input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.


	-e, --features: A file that contains experiment metadata.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





The metadata file contains eight columns plus one row for each sample. If a
column is not applicable, provide NA as input. Note that this file has
headers:

Experiment Perturbations PerturbationLevels  Treatment DeletedGenes  OverexpressedGenes  Time  Repeat
1 NA  NA  NA  NA  NA  NA  1
1 NA  NA  NA  NA  NA  NA  2
2 NA  NA  NA  NA  NA  NA  1
3 NA  NA  NA  NA  NA  NA  1
3 NA  NA  NA  NA  NA  NA  2
4 NA  NA  NA  NA  NA  NA  1
4 NA  NA  NA  NA  NA  NA  2
5 NA  NA  NA  NA  NA  NA  1
5 NA  NA  NA  NA  NA  NA  2
5 NA  NA  NA  NA  NA  NA  3





Further we need to provide a -w, --weight, typically an integral value between
10 and 1000 that controls how much more weight we give to perturbation experiments that involve the genes that are tested. Once we have those four parameters, we are
ready to run anoverence:

anoverence -i exr_mat.tsv -g genes.txt -e meta.tsv -w 500





As output we receive a lower triangular matrix of interaction scores:

0.288087
0.388856        0.405731
0.459865        0.276648        0.336653
0.432748        0.374432        0.397973        0.403535








Running ANOVERENCE for a subset of genes

Often we have only a small number of genes of interest. We can instruct
ANOVERENCE to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

anoverence -i expr_mat.tsv -g genes.txt -e meta.tsv -w 500 -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.388856
G4  G1  0.459865
G3  G2  0.405731
G4  G2  0.276648
G4  G3  0.336653
G3  G5  0.397973
G4  G5  0.403535











          

      

      

    

  

    
      
          
            
  
ARACNE

ARACNE ([Margolin2006]) is an inference algorithm based on mutual information
and applies data processing inequality to delete most indirect edges.

Our implementation differs to the original in that it estimates the initial
mutual information using a B-spline approach as described in [Daub2004] .


Running ARACNE

ARACNE needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run ARACNE:

mi -m ARACNE -i expr_mat.tsv -g genes.txt





The output is a lower triangular matrix of scores:

0
0.798215    0.874873
0           0.889133    0
0           0           0.860645    0.95965








Tuning the number of bins and spline degree

Estimating mutual infofrmation from discrete data is well defined, but normalized
expression data is usually continuous. To estimate the MI from continuous data, each
data point is usually assigned to one bin. This can lead to a loss of information.

The B-Spline estimator for MI therefore performs fuzzy assignment of the data to
bins. The -s, --spline parameter controls the spline degree (therefore
the shape) of the indicator function. For s=1 the indicator function is the
same as for simple binning. Improvements in the MI beyond a degree of s=3
are rarely seen, therefore it is a good choice as a default.

The number of bins used in the assignment can be controlled with the -b, --bins
option. By default it is automatically inferred from the data, but this can lead
to high memory requirements on large datasets. Generally, the number of bins is
assumed not to influence the MI much as long as it’s within a reasonable range. A
value between 5 and 10 is a good starting point for typically sized datasets from RNA-Seq.




Running ARACNE for a subset of genes

Often we have only a small number of genes of interest. We can instruct
ARACNE to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

mi -m ARACNE -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.798215
G3  G2  0.874873
G3  G4  0
G3  G5  0.860645
G4  G1  0
G4  G2  0.889133
G4  G3  0
G4  G5  0.95965








Running ARACNE in MPI mode

ARACNE can use parallel processing in the MI estimation step. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
CLR

CLR ([Faith2007]) is an inference algorithm based on mutual information
and applies contextual likelihood of relatedness to reweight edges based on a
shared neighbourhood.

Our implementation estimates the initial mutual information using a B-spline approach as described in [Daub2004] .


Running CLR

CLR needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run CLR:

mi -m CLR -i expr_mat.tsv -g genes.txt





The output is a lower triangular matrix of scores:

0.320993
0.944725    0.858458
0.431752    0.9078      0.453098
0.0897561   0.579328    0.794528    1.15506








Tuning the number of bins and spline degree

Estimating mutual infofrmation from discrete data is well defined, but normalized
expression data is usually continuous. To estimate the MI from continuous data, each
data point is usually assigned to one bin. This can lead to a loss of information.

The B-Spline estimator for MI therefore performs fuzzy assignment of the data to
bins. The -s, --spline parameter controls the spline degree (therefore
the shape) of the indicator function. For s=1 the indicator function is the
same as for simple binning. Improvements in the MI beyond a degree of s=3
are rarely seen, therefore it is a good choice as a default.

The number of bins used in the assignment can be controlled with the -b, --bins
option. By default it is automatically inferred from the data, but this can lead
to high memory requirements on large datasets. Generally, the number of bins is
assumed not to influence the MI much as long as it’s within a reasonable range. A
value between 5 and 10 is a good starting point for typically sized datasets from RNA-Seq.




Running CLR for a subset of genes

Often we have only a small number of genes of interest. We can instruct
CLR to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

mi -m CLR -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.944725
G3  G2  0.858458
G3  G4  0.453098
G3  G5  0.794528
G4  G1  0.431752
G4  G2  0.9078
G4  G3  0.453098
G4  G5  1.15506








Running CLR in MPI mode

CLR can use parallel processing in the MI estimation step. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
Correlation

This simple executable calculates pearson or spearman correlation from a set of
expression data.


Running correlation

Correlation needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run correaltion in Pearson mode:

correlation -m pearson -i expr_mat.tsv -g genes.txt





or in Spearman mode:

correlation -m spearman -i expr_mat.tsv -g genes.txt





The output is a lower triangular matrix of scores:

0.469355
-0.587163   -0.0704821
0.127765    0.16474     0.597376
0.145338    0.0138744   -0.77125    -0.758263








Optional arguments to correlation


	-a, --absolute: By default, the executable reports signed correlation values. Using this option will turn on reporting of the absolute value of the correlation coefficient. It is generally recommended to export correlation with signs (i.e. not absolute) and instead run seidr import in absolute mode, which will rank genes by their magnitude, but won’t throw away the sign information.


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the correlation calculation. Generally this should be on especially when calculating Pearson’s rho.







Running Correlation for a subset of genes

Often we have only a small number of genes of interest. We can instruct
correlation to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

correlation -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  -0.587163
G3  G2  -0.0704821
G3  G4  0.597376
G3  G5  -0.77125
G4  G1  0.127765
G4  G2  0.16474
G4  G3  0.597376
G4  G5  -0.758263











          

      

      

    

  

    
      
          
            
  
Ensemble methods

The ensemble methods are based on [Ruyssinck2014] . The three main executables
work the same way and have the same options. They all work by resampling the expression data along samples and genes, which often reduces variance in their predictions:


	el-ensemble: Uses an ensemble of Elastic Net regression predictors.


	svm-ensemble: Uses an ensemble of Support Vector Machine predictors.


	llr-ensemble: Uses an ensemble of Support Vector Machine predictors.




The Elastic Net code uses the GLMNET Fortran backend from [Friedman2010] .


Running Ensembles

Each ensemble needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run the ensembles:

el-ensemble -i expr_mat.tsv -g genes.txt
svm-ensemble -i expr_mat.tsv -g genes.txt
llr-ensemble -i expr_mat.tsv -g genes.txt





The output is a square matrix of scores:

0       0   0.876   0.124   0
0.894   0   0.106   0       0
0.894   0   0       0.106   0
0.894   0   0.106   0       0
0.894   0   0.106   0       0








Optional arguments for the Ensemble methods


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the regression calculation. Generally this should be on.


	-X, --max-experiment-size: In each resampling iteration, choose maximally this many samples along rows (experiments) of the dataset.


	-x, --min-experiment-size: In each resampling iteration, choose minimally this many samples along rows (experiments) of the dataset.


	-P, --max-predictor-size: In each resampling iteration, choose maximally this many genes along columns (predictors) of the dataset.


	-p, --min-predictor-size: In each resampling iteration, choose minimally this many genes along columns (predictors) of the dataset.


	-e, --ensemble: Perform this many resampling iterations for each gene.




The sampling boundaries -X, -x, -P and -p default to 4/5th of
samples/predictors for the upper bound and 1/5th for the lower. In runs with small
experiment sizes (<50) one should set this manually higher to avoid undersampling.
In these cases, I suggest 90% for the upper boundary and 50% for the lower (in experiments). These are absolute numbers. E.g., if you have 50 samples and you want 50% - 90% as a lower & upper bound, set -x 25 -X 45.




Running ensembles for a subset of genes

Often we have only a small number of genes of interest. We can instruct
the ensembles to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

llr-ensemble -i expr_mat.tsv -g genes.txt -t targets.txt
svm-ensemble -i expr_mat.tsv -g genes.txt -t targets.txt
el-ensemble -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.894
G3  G2  0
G3  G4  0.106
G3  G5  0
G4  G1  0.894
G4  G2  0
G4  G3  0.106
G4  G5  0








Running Ensembles in MPI mode

Each ensemble can use parallel processing. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks




The difference between SVM and LLR

LLR and SVM are based on different implementations of SVMs in C. One is based on
LibLinear [https://www.csie.ntu.edu.tw/~cjlin/liblinear/] , the other on
LibSVM [https://www.csie.ntu.edu.tw/~cjlin/libsvm] using a linear kernel. While
they should in general agree most of the time, coefficients are handled differently.
SVM is closer to the reference implementation by [Ruyssinck2014] , but LLR is
much faster.







          

      

      

    

  

    
      
          
            
  
GENIE3

GENIE3 calculates a Random Forest regression using genes as predictors. It then
uses Random Forests importance measures as gene association scores. The method
is described in [Huynh-Thu2010] . Internally, our implementation uses ranger
to calculate the forests and importance [Wright2017] .


Running GENIE3

GENIE3 needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run GENIE3:

genie3 -i expr_mat.tsv -g genes.txt





The output is a square matrix of scores:

0           0.108322    0.264794    0.0692147   0.0482803
0.00914761  0           0.00844504  0.00974063  0.00616896
0.167265    0.0721168   0           0.0914891   0.180078
0.0163077   0.0211425   0.0369387   0           0.0932622
0.00277062  0.00334468  0.00934115  0.0114427   0








Optional arguments for GENIE3


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the regression calculation. Generally this should be off.


	-b, --ntree: Grow this many trees for each gene.


	-m, --mtry: Sample this many features (genes) for each tree.


	-p, --min-prop: Lower quantile of covariate distribution to be considered for splitting.


	-a, --alpha: Significance threshold to allow splitting.


	-N, --min-node-size: Minimum node size







Running GENIE3 for a subset of genes

Often we have only a small number of genes of interest. We can instruct
GENIE3 to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

genie3 -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.167265
G3  G2  0.0721168
G3  G4  0.0914891
G3  G5  0.180078
G4  G1  0.0163077
G4  G2  0.0211425
G4  G3  0.0369387
G4  G5  0.0932622








Running GENIE3 in MPI mode

GENIE3 can use parallel processing. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
NARROMI

Narromi is an MI based algorithm that tries to minimize noise in the MI using
linear programming. It is published in [Zhang2013] .


Running Narromi

Narromi needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run Narromi:

narromi -i expr_mat.tsv -g genes.txt





The output is a square matrix of scores:

0           0           0.581267    0.00822935  0.0106747
0.100319    0           0.00249005  0.0137571   9.62593e-05
0.116941    0.00249005  0           0.624368    0
0.00822935  0.0137571   0.50236     0           0
0.0106747   9.62593e-05 0.29456     0.199657    0








Optional arguments for Narromi


	-a, --alpha: Initial cutoff for MI selection (alpha).


	-m, --algorithm: Linear programming algorithm. Interior point is probably faster, but can be unstable for some datasets. When in doubt, choose simplex.







Running Narromi for a subset of genes

Often we have only a small number of genes of interest. We can instruct
Narromi to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

narromi -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.116941
G3  G2  0.00249005
G3  G4  0.624368
G3  G5  0
G4  G1  0.00822935
G4  G2  0.0137571
G4  G3  0.50236
G4  G5  0








Running Narromi in MPI mode

Narromi can use parallel processing. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
Partial Correlation

PCor is an MI based algorithm that tries to minimize noise in the MI using
linear programming. It is published in [Schafer2005] .


Running PCor

PCor needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run PCor:

pcor -i expr_mat.tsv -g genes.txt





The output is a lower triangular matrix of scores:

0.291919
-0.431942   0.0617938
0.218244    0.0683963   0.266362
-0.0361338  0.0472015   -0.363056   -0.361116








Optional arguments for PCor


	-a, --absolute: By default, the executable reports signed correlation values. Using this option will turn on reporting of the absolute value of the correlation coefficient. It is generally recommended to export correlation with signs (i.e. not absolute) and instead run seidr import in absolute mode, which will rank genes by their magnitude, but won’t throw away the sign information.







Running PCor for a subset of genes

Often we have only a small number of genes of interest. We can instruct
PCor to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

pcor -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  -0.431942
G3  G2  0.0617938
G3  G4  0.266362
G3  G5  -0.363056
G4  G1  0.218244
G4  G2  0.0683963
G4  G3  0.266362
G4  G5  -0.361116











          

      

      

    

  

    
      
          
            
  
PLSNET

PLSNET uses a partial least squares feature selection algorithm to predict
interacting genes. It is published in [Guo2016] .


Running PLSNET

PLSNET needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run PCor:

plsnet -i expr_mat.tsv -g genes.txt





The output is a square matrix of scores:

0       10661.7 9103.01 3781.48 8553.33
1672.03 0       3808.75 4130.81 24318.7
2783.44 6850.63 0       2885.31 23882.1
1683.27 11640.3 4560.34 0       63590
1218.51 20635.5 9127.68 14218.4 0








Optional arguments for PLSNET


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the correlation calculation. Generally this should be on.


	-e, --ensemble: Perform this many resampling iterations for each gene.


	-c, --components: The number of PLS components to be considered.


	-p,  --predictor-size: The number of predictors (genes) to be sampled at each iteration.







Running PLSNET for a subset of genes

Often we have only a small number of genes of interest. We can instruct
PLSNET to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

plsnet -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  1560.18
G3  G2  892.019
G3  G4  1471.69
G3  G5  203666
G4  G1  943.506
G4  G2  1515.68
G4  G3  5611.66
G4  G5  542294








Running PLSNET in MPI mode

PLSNET can use parallel processing. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
TIGRESS

TIGRESS uses an ensemble approach (here called stability selection) to reduce prediction
variance in a LASSO model. It works somewhat similar to the other Ensemble methods .
TIGRESS is published in [Haury2012] . The LASSO uses the GLMNET Fortran backend in
[Friedman2010] .


Running TIGRESS

TIGRESS needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

0.4254475 0.0178292 0.9079888 0.4482474 0.1723238
0.4424002 0.0505248 0.8693676 0.4458513 0.1733112
1.0568470 0.2084539 0.4674478 0.5050774 0.2448833
1.1172264 0.0030010 0.3176543 0.3872039 0.2537921
0.9710677 0.0010565 0.3546514 0.4745322 0.2077183
1.1393856 0.1220468 0.4024654 0.3484362 0.1686139
1.0648694 0.1405077 0.4817628 0.4748571 0.1826433
0.8761173 0.0738140 1.0582917 0.7303661 0.0536562
1.2059661 0.1534070 0.7608608 0.6558457 0.1577311
1.0006755 0.0789863 0.8036309 0.8389751 0.0883061





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run PCor:

tigress -i expr_mat.tsv -g genes.txt





The output is a square matrix of scores:

0       0.5197  0.6558  0.2139  0.0838
0.6909  0       0.169   0.2216  0.3628
0.4819  0.1774  0       0.3084  0.7075
0.137   0.1418  0.3349  0       0.675
0.0182  0.1736  0.7209  0.6138  0








Optional arguments for TIGRESS


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the correlation calculation. Generally this should be on.


	-B, --nbootstrap: Perform this many resampling iterations for each gene.


	-n, --nlambda: Consider this many shrinkage lambdas.


	-l, --min-lambda: The minimum lambda value considered is this fraction of the maximum.







Running TIGRESS for a subset of genes

Often we have only a small number of genes of interest. We can instruct
TIGRESS to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

tigress -i expr_mat.tsv -g genes.txt -t targets.txt





In this case we will receive an edge list as output:

G3  G1  0.4819
G3  G2  0.1774
G3  G4  0.3084
G3  G5  0.7075
G4  G1  0.137
G4  G2  0.1418
G4  G3  0.3349
G4  G5  0.675








Running TIGRESS in MPI mode

TIGRESS can use parallel processing. For general info
on how to run parallel algorithms in seidr, please see Using multiple processors to infer networks







          

      

      

    

  

    
      
          
            
  
TOM Similarity

The toplogical overlap matrix (TOM) is the similarity measure implemented by
WGCNA [Langfelder2008]. It calculates a correlation matrix from the expression
data, calculates a soft threshold and assigns two genes a high topological
overlap if they share common neighbourhoods.


Running TOM similarity

tomsimilarity needs a minimum of two input files:


	-i, --infile: An expression matrix (genes are columns, samples are rows) without headers.


	-g, --genes: A file containing gene names that correspond to columns in the expression matrix.




Here is an example matrix containing expression data for five genes in ten samples:

6.107967  7.188796  7.139945  9.417835   6.195927
8.602925  9.134458  8.630118  10.695973  6.930023
6.699199  8.307864  8.174942  10.874148  7.143233
7.661777  8.891523  8.348661  10.439793  6.868748
7.031853  9.019152  8.539557  10.726523  7.461354
8.931517  9.246769  8.944240  10.774747  6.729316
6.815357  9.209684  8.607074  9.574451   7.400409
7.424712  9.603071  8.347164  10.609222  7.168921
8.465108  8.788967  8.875855  10.537852  6.628380
8.559188  8.992996  8.279209  10.640245  6.744078





In the genes files, we provide the column headers for the expression matrix in order:

G1
G2
G3
G4
G5





With that, we can run PCor:

tomsimilarity -i expr_mat.tsv -g genes.txt -b 4





The output is a lower triangular matrix of scores:

0.44357
0.486974  0.504881
0.370446  0.408224  0.42039
0.225011  0.465292  0.396999  0.252425








Optional arguments for tomsimilarity


	-s, --scale: This triggers feature scaling [https://en.wikipedia.org/wiki/Feature_scaling#Standardization] of the expression matrix before the correlation calculation. Generally this should be on.


	-m, --method: Choose between “pearson” or “bicor” (biweight midcorrelation [https://en.wikipedia.org/wiki/Biweight_midcorrelation]. The latter is typically a good choice unless you have a lot of outliers.)


	-b, --sft: The soft threshold power. This is the exponent for soft thresholding the correlation matrix. Unless you know why, leave it default.


	-M, --max-power: When auto-detecting the soft threshold power, this is the maximum value that will be tested. It’s usually not a good idea to go above 30. If you cannot get a good fit, decrease the cutoff instead.


	-S, --sft-cutoff: When the network reaches this scale free fit R^2 value, stop testing powers. Sometimes, you cannot get a good fit (>0.8) on larger datasets. In this case, decrease this value.


	-T, --tom-type: “unsigned”, “signed”, or “signed-hybrid”. This defines how to score the TOM. “unsigned” is \(\vert a_{ij} \vert\), “signed” is \(\frac{a_{ij} + 1}{2}\) and “signed-hybrid” is \(\vert a_{ij} \vert\) for positive correlation, 0 otherwise.







Running tomsimilarity for a subset of genes

Often we have only a small number of genes of interest. We can instruct
tomsimilarity to only calculate interactions involving those genes by
providing a -t, --targets file containing these gene names:

G3
G4





And running it with the -t, --targets options:

tomsimilarity -i expr_mat.tsv -g genes.txt -t targets.txt -b 4





In this case we will receive an edge list as output:

G3  G1  0.486974
G3  G2  0.504881
G3  G4  0.42039
G3  G5  0.396999
G4  G1  0.370446
G4  G2  0.408224
G4  G3  0.42039
G4  G5  0.252425











          

      

      

    

  

    
      
          
            
  
Comparing networks of different species with seidr


Introduction

Seidr can compare edges and nodes of two networks that originate from separate species if the user supplies an onthology to translate the node IDs from network A to network B. Consider the these two networks:

net1.sf:









	Source

	Target

	Type

	Weight;Rank





	A1

	A2

	Directed

	7.82637e-06;7



	A1

	A3

	Directed

	0.131538;5



	A2

	A3

	Directed

	0.532767;2



	A1

	A4

	Directed

	0.755605;1



	A2

	A4

	Directed

	0.218959;4



	A1

	A5

	Directed

	0.45865;3



	A2

	A5

	Directed

	0.0470446;6






net2.sf:









	Source

	Target

	Type

	Weight;Rank





	B1

	B2

	Directed

	7.82637e-06;8



	B1

	B3

	Directed

	0.131538;6



	B2

	B3

	Directed

	0.532767;3



	B1

	B4

	Directed

	0.755605;1



	B2

	B4

	Directed

	0.218959;5



	B1

	B5

	Directed

	0.45865;4



	B2

	B5

	Directed

	0.0470446;7



	B6

	B7

	Directed

	0.678865;2






[image: ../../_images/A_B_nets.png]
Before we can overlap these two networks, we need to define which nodes are equivalent between them. The file format is a very simple TAB delimited dictionary, each line defining a translation from A to B:

A1  B1
A2  B2
A3  B3
A4  B4
A5  B5








Important info


	The compare function currently completely ignores directionality. All output will be undirected.


	There is no support for asymmetric translations. If A1 -> B1, but B1 -> A2 it is left to the user which translation to prioritize.


	Ranks will be merged via \(\sum A_{ij} B_{ij}\) for overlapping edges where \(A_{ij}\) is an edge in network A and \(B_{ij}\) is an edge in network B


	Scores will be computed from all ranks in the dataset via \(\frac{x_i - min(x)}{max(x) - min(x)}\) where \(x\) is a vector of all ranks in the merged network and \(x_i\) is the current rank for edge \(i\)







Running seidr compare

As a minimum, the user needs to provide the translation (-t, --translate) and two networks in the binary SeidrFile (see SeidrFiles) format. This will create a new file (by default “compare.sf”) containing the merged network:

seidr compare -t dict.txt net1.sf net2.sf








Output of seidr compare

The output of seidr compare in its default mode is a merged network. Nodes with overlaps will be comma separated. If e.g. node A1 ine network A matches node B1 in network B, the joined new node will be “A1,B1”. The fourth column of the merged network contains important metadata for the edges:


	_Flag_: The flag indicates whether the edge was found in both networks (0), only in the first network (1) or only in the second network (2).


	_Rank_A_: This is the original rank of the edge in network A. If it was not present in network A, its rank will be 0.


	_Rank_B_: Analogous to _Rank_A_.













	Source

	Target

	Type

	Weight;Rank

	Flag;Rank_A;Rank_B





	A2,B2

	A1,B1

	Undirected

	0;15

	0;7;8



	A3,B3

	A1,B1

	Undirected

	0.307692;1

	0;5;6



	A3,B3

	A2,B2

	Undirected

	0.769231;5

	0;2;3



	A4,B4

	A1,B1

	Undirected

	1;2

	0;1;1



	A4,B4

	A2,B2

	Undirected

	0.461538;9

	0;4;5



	A5,B5

	A1,B1

	Undirected

	0.615385;7

	0;3;4



	A5,B5

	A2,B2

	Undirected

	0.153846;13

	0;6;7



	B7

	B6

	Undirected

	1;2

	2;0;2
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Running seidr compare -n

If you are interested in nodes, rather than edges, you can run seidr compare with the -n option. This will create output describing whether a node had at least one edge in network A (1), network B (2) or both (0):

seidr compare -n -t dict.txt net1.sf net2.sf








Output of seidr compare -n

The output of seidr compare -n will be 2 columns as TAB delimited text written to stdout indicating whether a node had at least one edge in network A (1), network B (2) or both (0):

A1,B1 0
A2,B2 0
A3,B3 0
A4,B4 0
A5,B5 0
B6  2
B7  2











          

      

      

    

  

    
      
          
            
  
Running seidr with nextflow

If you are looking for a convenient way to run seidr, you can consider running it off
nextflow [https://www.nextflow.io/] . We provide an example configuration
(nextflow.config) and nextflow pipeline vala.nf in the nextflow
directory of the project root.

Currently, running on a local machine, and on a SLURM cluster are supported. Modify
the relevant entries in nextflow.config and then run:

nextflow run vala.nf









          

      

      

    

  

    
      
          
            
  
Using multiple processors to infer networks

A number of computationally intensive network inference algorithms in seidr
are written using a hybrid MPI/OpenMP approach. This allows for sahred memory
parallelism on a single computer or across many nodes in a cluster. Some inference
algorithms in seidr have been run on hundreds of CPUs across many nodes in
a high performance compute cluster.


Running in OMP mode

By default, if your computer has multiple CPU cores availble, seidr will use
as many as it can. If the subprogram has parallel processing support, you can
control the extent of the parallelization with the -O,--threads option.

Example:

# Use all available threads by default:
seidr import ...

# Use two threds
seidr import -O 2 ...

# Use environment variables to control the number of threads
export OMP_NUM_THREADS=2
seidr import ..








Running in MPI mode

By default all inference algorithms will use all cores to process data. Let’s
use CLR as an example:

mi -m CLR -i expr_mat.tsv -g genes.txt





This will spawn eight compute threads (on my laptop) to process the data.
In order to control the allocated number of CPUs, we can use the -O flag
of the mi program:

mi -O 4 -m CLR -i expr_mat.tsv -g genes.txt





This will use 4 compute threads.

If we want to use multiple nodes, we can use  we can run the same command as a child of the mpirun
program. You should first define a hostfile [https://www.open-mpi.org/doc/current/man1/mpirun.1.php#sect6].:

mpirun -hostfile myhostfile.cfg mi -m CLR -i expr_mat.tsv -g genes.txt





This will spawn a distributed version of the MI inference, running the maximum
amount of OpenMP threads. You can combine mpirun and the program’s -O
argument to control the number of compute threads each MPI worker spawns.

A special note on MPI rank order: the highest memory node on the cluster you are
using should always be rank 0. If there are any high memory tasks, Seidr will
assign them to this MPI worker.

For more info on running MPI jobs (including running them on several nodes), please
refer to the OpenMPI webpage [https://www.open-mpi.org/faq/?category=running]




The batchsize argument

All MPI enabled inference algorithms in seidr have a --batch-size argument.
This is the number of genes a compute thread will process at once before requesting
more from the master thread. Lower batch sizes will lead to more time spent in I/O
operations and more temporary files, but setting it too high might leave compute
threads without work for portions of the run. A good rule of thumb is to set this
to \(\frac{n_{genes}}{n_{nodes}}\). As an example, if I am estimating the
network for 25,000 genes using a five nodes, I set --batch-size to \(\frac{25000}{5} = 5000\). In general, it is safe to let seidr decide on the batch size.







          

      

      

    

  

    
      
          
            
  
SeidrFiles


Introduction

Seidr employs it’s own file format (called SeidrFile) to store network data. This is done to increase performance, as SeidrFiles are:


	Losslessly compressed using bgzip (to save space)


	Ordered in a lower triangular to enable faster algorithms


	Ranked, so that scores can be rank-aggregated







The SeidrFile header

A SeidrFile has a header that keeps information such as the number of edges, nodes, the node names etc. You can view the header of a SeidrFile with the command:

seidr view -H <SeidrFile>





The output might look something like this:

# [G] Nodes: 50
# [G] Edges: 1225
# [G] Storage: Dense
# [G] Algorithms #: 14
# [G] Supplementary data #: 13
# [A] ARACNE
# [A] CLR
# [A] ELNET
# [A] MI
# [A] GENIE3
# [A] LLR
# [A] NARROMI
# [A] PCOR
# [A] PEARSON
# [A] PLSNET
# [A] SPEARMAN
# [A] SVM
# [A] TIGRESS
# [A] irp
# [S] D1
# [S] D2
# [S] D3
# [S] D4
# [S] D5
# [S] D6
# [S] D7
# [S] D8
# [S] D9
# [S] D10
# [S] D11
# [S] D12
# [S] D13
# [R] Version: 0.10.0
# [R] Cmd: seidr aggregate -f -k -m irp aracne.sf clr.sf elnet.sf elranks.sf genie3.sf llr.sf narromi.sf pcor.sf pearson.sf plsnet.sf spearman.sf svm.sf tigress.sf
# [N] G1
# [N] G2
# [N] G3
# [N] G4
# [N] G5
# [N] G6








The SeidrFile body

In the main body of a SeidrFile, we store the edges of a network. Specifically, for each edge, we have at least four columns:


	Source: For directed edges, this is the originating node, for undirected edges, this is simply one of the partners


	Target: For directed edges, this is the destination node, for undirected edges, this is simply the other partner


	Type: Undirected if the node is undirected, Directed otherwise


	X_score;X_rank: This column holds the original score for algorithm “X” as well as its computed rank.




Besides these four mandatory columns, a SeidrFile can hold any number of additional score/rank columns if it is an aggregated or otherwise processed file and and additional supplementary column that annotates the edge with extra information. To view the body of a SeidrFile you can use:

seidr view <SeidrFile>





Here is the output of a simple imported network:

G1      G2      Directed        0.004;334084
G3      G1      Directed        0.334;22729.5
G1      G4      Directed        0.071;89307
G4      G2      Directed        0.053;104778
G3      G4      Directed        0.006;282776





And one that is a little more complex, with 14 score/rank columns and a supplementary column at the end. In aggregated SeidrFiles, the representative score/rank is always the rightmost (last) score/rank column:

G2  G1  Directed  0.288087;1.30856e+06  nan;nan 1.87357;106802  0.004;334084  -0.018736;243746  0.0904447;42007 0.244;37455.5 0.0128741;202752  -0.159435;202751  1.07712e-05;360264  -0.00225177;1.32058e+06 0.152;26168 nan;nan 0.978291;117022 11





You might notice the columns with nan:nan as score/rank. Seidr uses nan as a placeholder to denote a missing edge. That means this particular edge (G2 -> G1) was not found in the second and thirteenth algorithms.




The SeidrFile index

SeidrFiles can be indexed with the command:

seidr index <SeidrFile>





This will create an index file with the extension .sfi. The index allows us to access edges quickly in a SeidrFile without having to decompress unnecessary data. Some seidr commands therefore need the index. As an example, let’s see what happens if we try to pull out a specific edge from a SeidrFile without an index:

seidr view -n G1000:G3 <SeidrFile>
[ ERROR   ][ 2018-05-02T21:35:45 ][ seidr ]: SeidrFile index <SeidrFile.sfi> must exist when using --nodelist





Otherwise, if the index exists:

seidr view -n G1000:G3 ../dream_net1/aggregate/aggregated.sf
G1000 G3  Undirected  0.388607;611152 nan;nan nan;nan 0.001;581639  -0.0200038;209560 0.00623208;1.16541e+06  0.057;174410  0.00177422;752791 -0.0595161;752789 2.76065e-06;1.11154e+06 -0.0432047;834369 0.031;315583  0.0006;123144 0.507107;458113
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